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1. Elements on the inference scheme 
 
 
General Procedure of the Bayesian inference. The inference scheme features two generic steps: first, the derivation of 

the posteriori probability distribution of the unknown parameters given the experimental observations and second the 

sampling of the posterior distribution to estimate the parameters. It follows from Bayes rule that the posterior probability 

distribution P({Ul}|{Tk})  of the set of the unknown parameters {Ul} given the set of observed trajectories {Tk} reads  

 P Ul{ } Tk{ }( ) = P Tk{ } Ul{ }( )P Ul{ }( )
P Tk( )  

(S1) 

where P({Tk}|{Ul}) is the likelihood of the trajectories given the set of parameters {Ul}, P({Ul}) is the prior probability of 

the set of parameters and P({Tk})=∫ P({Tk}|{Ul})P({Ul})d{Ul} is the evidence of the model. Without any prior knowledge 

we used Jeffrey’s prior as a prior distribution  (discussed below). The estimator of the set of parameters {Ul} (in this 

paper) is the Maximum A Posteriori (MAP), i.e. the values of {Ul} that maximize the posterior distribution. 

 
Prior Information. There are various choices of priors for the inference depending on its expression and on what 

characteristics of the diffusion and potential fields are to be extracted.  

Jeffrey’s rule: Results displayed in the paper were inferred using the following prior. Experimentally, there are no prior 

information on the diffusion and potential fields.  Yet, in Bayesian inference, prior knowledge can be extracted from the 

symmetries of the likelihood distribution [1]. Jeffrey’s rule states that: 

 P U{ }( )! J  (S2) 
where J is the matrix defined by 



 J = !U!
T
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 (S3) 

and !U  is the gradient with respect to the components Ul  of the N-dimensional hypothesis  
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with N the total number of parameters. The operator !U!U '
T is the dyadic product of the gradients, i.e. the matrix of the 

second derivatives. Note that J
 
is proportional to the Fisher Information of the likelihood [2,3].  

Inside a mesh domain the likelihood reads 
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where all the sources of positioning noise, such as Poisson noise, background fluorescence, algorithm to fit the intensity 

profile… are modelled into one Gaussian distribution with null average and σ standard deviation. This leads to the prior  

 P Di, j,!xVi, j,!yVi, j( )" Di, j
2

Di, j#t +!
2( )2

 (S6) 

An example of prior is plotted in Fig. S1: 

 
Figure S1. Prior distribution of the parameters with Δt= 0.05s and σ= 30nm. The Prior distribution cannot be 

normalized. 

 

Interestingly, this prior is still improper (it cannot be normalized) and if there were no positioning noise the prior would 

be flat which would lead to maximum likelihood optimization for the estimation of the diffusion and potential fields.  

The smoothing prior: In the version of the inference scheme used in the analysis of the data, high gradient damping is 

introduced in the potential optimization scheme. It was also possible to introduce it directly, through a prior penalizing 

high gradients values:  
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It is worth noting that in that case, the potential evaluation could be performed by minimizing: 

 ! Vi, j{ } i, j( )! N i, j( ) " 0{ }( ) = #Vi, j $#V
inf
i, j( )2

i, j( )
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(S8) 

For our measurements, the two damping methods led to similar results.  

Experimental Prior: Experimental data accumulated on various cells can be used as priors for future inference. Statistics 

of diffusion values in the mesh cells can be used as a global prior on diffusion values. Similarly, the smoothness of the 

diffusion and potential fields can be extracted from experimental data by fitting the distribution of !Vi, j
2

and !Di, j

2

with the distribution p! x( ) = e!!x  to find the optimal βopt and then use p!opt . 

 

Likelihood of the diffusivity and gradient potential over the cell surface. The local surface of the cell is meshed with 

regular subdomains whose dimensions are proportional to the average jump lengths. The typical length of the subdomains 

is designed so that the biomolecule motion between two consecutive frames happens either inside the same mesh 

subdomain or between two nearing subdomains. Note that nothing prevents irregular meshing of the surface of the cell, as 

long as there is no undersampling of internal mesh rectangles. Within each mesh subdomain the potential gradient is 

approximated to be constant. So inside the mesh square (i,j) the solution of Fokker-Planck equation reads 
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As all the mesh domains are independent, the global posterior distribution P is the product of the posteriori inside each of 

them [4]: 

 

 

(S10) 
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where μ designates the index for which the points   of trajectory  are in Si,j, σ is the experimental localization 

accuracy (~30 nm) and Δt the acquisition time. The estimators  of the local diffusivity and force field 

are the Maximum a Posteriori (MAP) of the posterior distribution of the parameters. 

 
Potential optimization from the gradient field. The potential at the surface of the cell is extracted from the MAP values 

of its gradient field. The estimation is performed by minimizing ξ({Vi,j }), which is defined as 

 
 

(S9) 

with |N(i,j)| the number of neighboring occupied mesh domains, β(δ) a constant (optimized on numerically generated 

trajectories) depending on δ that is the ratio between the size of the domains and the average length of the protein motion 

during Δt. In order to diminish the bias that the mesh could induce in the evaluation of ∇Vi,j, the gradient along the two 

directions x and y was fitted, using two neighboring sites, by parabolic functions  !x x, y( )  and !y x, y( )  so that 

!xVi, j = "#x x, y( ) "x  and !yVi, j = "#y x, y( ) "y . ξ({Vi,j}) is the sum of two terms: the first one aims to minimize the 

difference between the gradient of the potential field and the inferred gradient field while the second one penalizes the 

strong gradients. This penalization allows better convergence towards the true value of the potentials; it also prevents 

anomalous generation of very high potential areas that would modify the potential on a large scale.  

 

We emphasize that typical experimental trajectories lead to several hundred to thousands of variables. The quality of the 

optimization on such a large number of variables was investigated numerically. Typical procedures, similar to the ones 

used in [5-9], have been employed to test the convergence and the quality of the inference. Here we discuss the choice of 

β(δ). Numerical simulations with the same diffusivities, the same average number of points per mesh rectangle, the same 

average trajectory duration and globally the same potential energy landscape were used to generate trajectories that were 

subsequently inferred for various values of β. The optimal β was the one that minimized the average square difference 

(ψ) between the input and the inferred potential field. 

 
Figure S2. A) Evolution of the average difference ψ (normalized here) between the theoretical potentials and inferred 
ones with β for a mesh subdomain with δ=2. B) Evolution of the average difference ψ (normalized here) between the 
theoretical potentials and inferred ones with β for a mesh subdomain with δ=3. 
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 β was found to mainly depend on the choice of δ, which in our experiments was always set between 1 and 3 to minimize 

the number of holes in the mesh structure. Note that the choice of β may also be driven by the search of some specific 

structures in the potential field, low values of β would favor large local variations of the potential whereas high values 

favor low variations over large scale and damp the large local variations of the potential. 

 
Inference applied to a synaptic cluster. When dealing with local motion (i.e. inside a cluster), the inference scheme was 

derived from the ones introduced in [5-8]. Trajectories entering the synaptic area, identified as the translocations entering 

the fluorescent signal of the tagged gephyrin, were grouped together to be analysed. The potential was developed on a 

basis of function so that the inference is performed on the coefficient of the development. A simple polynomial basis 

provided good results (see refs [5-9]): 

 V2D x, y( ) = ! k x ! xc( )l y ! yc( )m
l+m"N
#  (S11) 

with xx, yc( )  the barycenter center of mass of the trajectory points, k = l +m( ) l +m +1( )
2

+ l  and N the order the polynomial. 

The posteriori reads: 
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With Si, j  the mesh rectangle (i,j), μ the index where the biomolecule is in (i,j), Δt the acquisition time. Each mesh 

rectangle was treated independently and they were coupled together by the potential polynomial development. In the 

numerical implementation of the scheme, positions were expressed in µm, the diffusivity in µm2s-1 and the potential in 

kBT. Theoretically, the choice of the optimal order of the polynomial is made by comparing, for varying value of N, the 

evidence of the model. As the order increases, the space of integration gets larger. Due to the shape of the posteriori 

(product of Gaussians) integrals may be approximated by the Laplace method, i.e. the posteriori is approximated by a 

Gaussian probability distribution centered on the MAP and so the integral is evaluated directly. Yet, in a practical 

manner, the algorithm runs fast and so the criterion to choose the order of the polynomial may simply be the absence of 

change in the potential shape and the lowest error on the coefficient of the development.   

Note that simple polynomial development is not the only possible basis. Depending on the type of motion and on 

the global geometry of the trajectory, 2D Fourier series and 2D orthogonal Hermitte functions are useful bases. The latter 

is interesting when dealing with local confinement surrounded by free motion. Yet, both are much less versatile in their 

use than the simple polynomial basis. 

 

Error estimation. An estimate of the error on the various parameters can be obtained using one of the two following 

general strategies: first, the direct sampling of posterior distribution using Monte Carlo algorithm and second the 

evaluation of the eigenvalues of the log-posteriori Hessian at the MAP values. The latter method takes advantage that 

most of the relevant quantities are extracted from the neighborhood of the maximum of the distribution. However, the 



Hessian, which is much faster to compute than the Monte Carlo Algorithm, will tend to slightly over-estimate the noise of 

the diffusivities. Furthermore, if one is interested in the error evaluation for the difference of potential between two 

points, Monte Carlo sampling of the posteriori is the more efficient way. 

 
Initialization of the parameters before optimization. In the two inference schemes, the potential and the diffusivity 

fields have to be initialized to accelerate the convergence of the optimization processes. When the inference is performed 

on large surfaces, the potential is initialized by the thermal equilibrium values, i.e. Vi, j = !kBT log Ni, j NMax( )  with Ni, j  the 

number of points in the mesh subdomain (i,j) and NMax the maximal number of points inside one of the mesh 

subdomains. The diffusivity fields can be initialized in two ways leading to approximately the same computation time. 

The most common consists in approximating the diffusivity along the arbitrarily defined x-axis and y-axis as

 

Dx = lx
2 /!t   and 

 

Dy = ly
2
/!t  with lx , ly  that are the average step sizes along x and y during Δt. Then, the 

diffusivity field is initialized to Di, j =1/ 3 Dx + Dy( ) . The other one consisted on performing the same calculus but 

locally on groups of mesh subdomains. When the inference is performed locally, the diffusivity field is initialized in the 

same manner as for the inference on large surfaces. The coefficient of the polynomial development of the potential are 

initialized on an harmonic approximation of the potential with the spring constant k = 2V0 rmax ! rmean
2

with rmean  the 

average position, rmax the position corresponding to the largest distance from rmean  and V0  a user defined potential value, 

usually set to 5kBT. 

 
Possible bias during the potential landscape optimization. Here, we want to emphasize an important point. In all the 

possible applications of the different schemes shown here, it is essential to quantify their behaviors with extensive 

simulations. Furthermore, most of the bias that we have encountered (see for example [7,8]) can be analytically corrected. 

Fortunately, the overdamped Langevin equation framework is fast to simulate, allowing direct testing of the various types 

of inference schemes. Theoretically, the quality, the rate of convergence and the optimality have to be evaluated by 

computing the Fisher Information [2,3]. Unfortunately, in most of these systems, the summation over all possible 

parameters state is impossible due to its large size. Hence, we have to rely on extensive simulations to study the behavior 

of the inference. 

 

In order to illustrate the bias that can appear on the potential maps, we show on the next figure an example of complex 

field inference. As an example of complex field, we chose an oscillating potential because it induces a very incomplete 

sampling of space due to the proximity of low potential region to high potential region: 
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with λ=800 nm. The inferred potential (Fig S3. A,B) matches the structure and the amplitude of the potential used to 

generate the trajectories. The advantage of using symmetric potential fields is that it highlights (by propagating them) the 

defects of the optimization procedure. Interestingly, the potential is well inferred near the boundaries of the domains, 



while in some parts near the center, there are small differences between the inferred and the simulated potential but these 

errors do not propagate thanks to the damping term !
!
!V r( )"# $%

2  in the optimization function. Overall, the inference is able 

to recover fast variation of the potentials with local bias near high potential structures.  
 
 

 
 
 
Figure S3.  A) Potential map used to generate the trajectories. B) The inferred potential field with trajectories simulated 
in A). C) Potential map used to generate the trajectories. D) The inferred potential field with trajectories simulated in C). 
The red ellipses point the two local areas where there is a significant bias. Simulations to generate the trajectories were 
made with reflecting boundary conditions on the borders, shown here by the black curves. E) Potential map used to 
generate the trajectories. F) The inferred potential field with trajectories simulated in E). G) Potential map used to 
generate the trajectories. H) Inferred potential field with trajectories simulated in G). The white square is the un-sampled 
part of space due to the removal of the trajectory points. Simulations are performed with a diffusion field with constant 
value D=0.1μm2s-1 and Δt=50ms. Note that the colorbar may be different between the simulated and inferred landscape. 
 
 

More generally, the borders tend to generate limited or very localized bias. In Fig.S3C,D we show on a complex 

geometry (with an identical potential as the one used in Fig.S3A,B) that the borders do not shift significantly the inferred 

potential from their true values in the internal part of the maps, and that mainly on the top right of the geometry, in a 

region mostly unvisited the potential is locally biased. In most parts of the border regions there are no biases in the 

inferred potentials. Note that the differences in the color of the maps are induced by the high potential region on the top of 

Fig.S3D. The inference is not going to detect every possible structure. Obviously, diffusion or interaction structures on 

scales largely inferior to the scale of the diffusion motion (~ 4Di, j!t ) cannot be seen. Note that it does not mean that 

other estimators could not be used to extract characteristics of these structures, yet in order to access these scales prior 

knowledge would be necessary. One of the key interests of the mapping scheme is that no prior information is needed to 

extract information from the random motion. Some structures of potential are also going to shield others from being 

accessible to the inference. In Fig.S3E,F we show an example on a more heterogeneous potential. The potential is well 

inferred except in the region of high potential that is partially inaccessible due to its high value. Yet, the average 



difference between local maxima and minima of the potential, in the periodic structure, is the theoretical value (4 kBT). 

This proves that some potential structures can prevent the inference from accessing local information but that this will not 

have large scale effects. Finally, some regions may be unvisited for technical reasons such as regions that are out of focus 

or simply the absence of experimental points. In Fig.3G,H we show the effect of un-sampled areas by removing all the 

points in the trajectories inside a square. We made the empty square larger than the ones met experimentally to induce a 

noticeable effect. Again the inference is slightly biased near the anomaly (lack of points) but remains of good quality on 

the rest of the surface. There are no biases in the estimation of the difference between the maxima and the minima of the 

potentials (4 kBT). 

 

Finally, we tested the inference scheme in the absence of potentials to ensure that optimization on large surfaces did not 

generate local potentials (this test had already been performed for the confined trajectories in local potentials [7,8]). 

 

 
Figure S4. A) Constant potential used to generate trajectories. B) Inferred potential. Note the low values of the potential 
value; the noise in the potential is 0.15 kBT; it is the consequence of the mesh with small variation of potential near 
neighboring mesh subdomains. 
 
Some of the possible structures that may appear when there is a constant potential are small oscillations of potential 

values between neighboring mesh subdomains. They are mostly the consequence of the finite mesh size. Yet, if 

experimentally we would expect small potential values or large areas without potentials variations, the value of β should 

be raised. Another possible way to deal with flat regions and other possibly complex structures would be to build non-

regular types of mesh. Meshes generated to have identical number of trajectory points lead to very good results by 

diminishing the bias in the inferred potential. Yet, the relations between the numbers of points in each mesh subdomain, 

the characteristics of the potential and diffusion landscape and the value of β are less direct than for regular meshes. In 

Fig.S5, we show an example of these structures in the experimental energy landscape for the β--TM construct 
 



 
Figure S5. Energy Maps for membrane construct β--TM. 

 
 
 
2. Simulations and measurements in the landscapes 
 

Why performing Simulations in the Maps. Probing a biological environment using single molecule technics (SPT, 

PALM, UPaint etc.) involve a tradeoff between 3 main phenomena: 

• Spatial Sampling 

• Duration of Recording 

• Typical time of biological variations 

Efficient spatial sampling, especially for large areas (>1μm2), can either be achieved by long trajectories or by numerous 

short trajectories. It is also worth noting that the nature of the motion (fractional Brownian Motion, Continuous Time 

Random Walk etc.) may prevent efficient spatial sampling. Precise measures of temporally averaged estimators (MSD, 

first time passage) require long trajectories to be discriminative. Yet, the possible heterogeneities of the surrounding 

media are going to be inserted in the estimators preventing their direct use as parameters estimators or as model 

discriminant. Finally, All measures have to be made with minimal variations of the biological system. Again, it is worth 

noting that in most biological systems all the characteristics times of biological variations are not known, hence measures 

based on the fluctuations of interests estimators are useful to detect significant variations of the biological system.  

In order to analyse, at multiple scales, the neuronal membrane, we combined the UPaint recording, the inference scheme 

and the simulations in the maps. Large numbers of short trajectories allow efficient space sampling even for complex 

media. Short individual recordings prevent the use of estimators on individual trajectories. The total time of recording 

(few minutes) does not lead to significant changes in the measures (done by the inference). The inference allows the 

measure of the diffusion and potential field on the membrane. Hence, we have shifted the balance towards space mapping 

and short time recording. Simulations in the maps allow studying any estimator without limitations in time or in number 

of trajectories. Furthermore, they allow the use of “Ensemble Averaged” estimators that are more selective than 

temporally estimated estimators. 

  



Simulations in the landscapes. The maps of the diffusion and energy landscapes, D(r) and V(r), can be used to simulate 

the behavior of the molecules at different time and space scales. In each mesh sub-domain (i,j) a diffusivity Di,j  is 

associated with a potential energy value Vi,j. The dynamics of the molecules are described by the Fokker-Planck equation: 
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where 

! 

P r, t r0,t0( )  is the conditional transition probability from (r0,t0) to (r,t). Fokker-Planck equations can always be 

approximated by Master equations: 
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with in our case 
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if the transition happens in x direction and  
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if the transition happens in the y direction and with W(i,j),(i’,j’) the transition rate from the (i’,j’) site to the (i,j), Δx (Δy) the 

mesh size in the x (y) direction, and  the potential gradient acting on the random walker in the x (y) direction 

when moving from (i’,j’) to (i,j). The motion of the molecule following equation (S19) was simulated using the Gillespie 

scheme [10]. When the molecule was at the site (i,j), the transitions rates, rewritten aυ to match Gillespie formalism, υ 

taking values from 1 to 4, were evaluated on all neighboring sites. We define a0=Σνaν. The time, τ, to move from the site 

(i,j) to a neighboring site is extracted from an exponential probability density function of rate a0, so that 

 
 

(S18) 

with r1 a random number in [0,1]. The destination site, k, is chosen to satisfy  

 
 

(S19) 

with r2 a random number in [0,1]. Limits of the neuronal cells and unvisited sites are defined as inaccessible sites. Note 

that the trajectory generation process leads to trajectories with non-constant time steps. In order to evaluate the different 

estimators (see below), trajectories were regularized to obtain the molecule position at regular time lags by imposing that 

as long as each !  was not reached the molecule did not move. 

 
Computations of the estimators of the protein movement. Here, we explain how the various estimators of the protein 

movement were extracted and also show other possible estimators that were not included in the main text. Unless 

mentioned otherwise, the estimators were obtained by averaging trajectories coming from different neuronal maps or 

from different clusters. Using the simulated data, we computed: 
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- The propagator ∏(d,t), i.e. the probability of moving a distance d in a time t.  
- The scaling factor χ(t) (Fig.4c), computed from ∏(d,t) 
- The ensemble-averaged mean squared displacement (MSD) defined as 

 r2 t( ) =
1
N

ri t( )! ri 0( )( )
i=1

N

"
2

 (S20) 

with N the total number of trajectories.  

- The time statistics to escape gephyrin clusters (Fig.S6A), computed by generating trajectories beginning in 

the clusters and measuring the time needed to exit the clusters. 

 

 
Figure S6. A) Example of “time to escape gephyrin clusters” statistics based on simulations on subsets of βWT-TM 
molecules, shown in log-log scale. Black points are results of simulation and colored lines are linear fits (in log-log) with 
slope α=-1.8 in red and in α=-8. in green. B) Example of “time to reach a gephyrin cluster” statistics based on 
simulation on subsets of βWT-TM expressing neurons in log-log scale. Black points are results of simulation and colored 
lines are linear fits (in log-log) with slope α=-0.5 in red, α=-1.7 in green and α= -2.6 in blue. C) Statistics of first time 
passage for a distance of 1μm, average over the complete set of neurons. Colors are associated to receptors, βWT-TM in 
black, βS403D-TM in Blue and β--TM in Red. D) Evolution of the distance that receptors first reach with the average first 
time to reach it. Colors are associated in the same fashion as for C). the distance scales as tη with η=0.44 for βWT-TM, 
with η=0.48 for βS403D-TM and with η=0.49 for β--TM. 
 

- The time statistics to enter a gephyrin cluster (Fig.S6B), computed by measuring the time needed to get to a 

cluster, starting from any point outside of clusters. 

- The first passage time statistics to reach a specific distance (Fig.S6C), computed by generating trajectories 

starting from any point at the surface of the neuron and measuring the time needed to reach the defined 

distance for the first time.  



- The evolution of the distance to reach with the average first time to reach it (Fig.S6D), computed from the 

first passage time statistics.   

 
Simulations of the fluctuations of receptor numbers. Fluctuations of the number of receptors in the gephyrin clusters 

were (numerically) measured by placing receptors at the surface of a neuron with experimentally measured densities, i.e. 

500 receptors per μm2 inside gephyrin clusters and 5 receptors per μm2 outside, and then letting them evolve using the 

Gillespie scheme. We thus deduced the time course of the number of receptors at individual synapses (see results in 

Fig.4). Using the same method, we also computed a map of relative variations of receptor numbers (Fig.S7). 
 
 

 
Figure S7. Map of the relative variation (standard deviation over mean) of receptor number during a 100 s temporal 
window. 
 
3D Biases. The inference scheme is not limited to 2D motion and may be applied in 3D. In our case the transmembrane 

proteins movements were analyzed in 2D although the membrane can exhibit curvature. However, we show that the 

possible local curvature of the membrane has a limited effect on the inferred values.  

 

We first simulated the random walk on a cylinder with high curvature κ=4 μm-1 (R=250nm) and inferred the diffusivity 

field using the inference scheme developed in the paper. The motion was not limited along the axis of the cylinder. We 

show, on figure S8A, the statistics of diffusivity values inside all mesh squares  

 

 



Figure S8 . Inferred diffusivity statistics of a random walker on a cylinder A) and on a sphere B) of radius 250nm with 
Δt=50ms. The diffusion used to generate the trajectories is D=0.1μm2s-1 and is indicated by the red lines. Trajectories are 
recorded on (x,y) plane. The statistics is made with the MAP values of the diffusivity in each mesh square of the mesh. 
 

We next simulated the random walk on sphere with high curvature κ=4 μm-1 (R=250nm). Results are shown on Fig.S8B. 

The statistics show two local maxima centered on the true value of diffusivity, and the average value of the distribution is 

<D>=0.11±0.02 μm2s-1. We observe that for high curvature the inference scheme tends to slightly shift the diffusivities. 

Interestingly, when there is curvature the diffusivity statistics have characteristics that differ from the ones on flat 

surfaces. Furthermore, the statistics of the points’ positions that are concentrated on the limit of the cylinder or the sphere 

indicate the presence of curvature. So, here we deliberately applied the inference without taking the noticeable curvature 

effect (very inhomogeneous repartition of points) into account. Note that in both cases if the curvature is taken into 

account, by modifying the expression of the likelihood, both statistics become unbiased and centered on the true value of 

diffusivities. 

 

Here, we show how to generate the trajectories on the cylinder and the sphere. The simulation of the random walk on the 

cylinder was straightforward because of the parameters values:  

 
!t+dt =!t +

2Ddt
R2

dUt

yt+dt = yt + 2DdtdVt

, (S21) 

with R the radius of the cylinder, θ the radial angle, y the direction of the cylinder, D the diffusivity, Δt the time between 

each move, and dUt,dVt( )  Gaussian random numbers of null average and of unit standard deviation. 

 

In that case the propagator reads 
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The simulation of the random walk on the sphere could not be simulated with a similar scheme   

 
!t+dt =!t +

2Ddt
R2

dUt

"t+dt ="t +
Ddt

R2 tan "t( ) + 2DdtdVt

, (S23) 

 

Since a suitable dt would have to be such as dt ! R2 D , diffusion was simulated on a shell of width h such that 

! = h R < 0.01  with reflecting boundary conditions on the inner and outer shell. dt was adjusted so that the relation 

cos ! t( )( ) = e
!2Dt
R2  was respected. Note that another way to efficiently simulate the random walk on the sphere, or more 

generally on a n sphere in an n+1 Euclidian space, can be found in [11]. 



 

In that case the propagator reads. 

 P !,", t !0,"0, t0( ) = Yk
m !,"( )

m=!k

k

"
k=0

#

" Yk
m !0,"0( )e!

k (k+1)D t!t0( )
R2 , (S24) 

with  

 Yk
m !,"( ) = eim!Pkm cos !( )( ) , (S25) 

with Pk
m  the Legendre functions.  

 
 
 
 
 
3. Supplementary Videos 
 
 
 

 
Sup Movie 1: example of a uPaint movie for the beta- TM construct (red), labeled with anti-GFP antibodies 
coupled to Atto647N dues, and gephyrin molecules (green). Acquisition time: 50 ms/image. 
 
 



 
 
Sup Movie 2 : example of a uPaint movie for the betaWT- TM construct (red), labeled with anti-GFP antibodies 
coupled to Atto647N dues, and gephyrin molecules (green). Acquisition time: 50 ms/image. 
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